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Numerical approximation of breathers in lattices with nearest-neighbor interactions
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A numerical method is presented for accurately approximating time-periodic and spatially localized solu-
tions known addiscretg breathers, of the equations of motion describing lattices with one degree-of-freedom
per lattice site and nearest-neighbor interactions. Our method is an extension of an approximation suggested by
Tsironis[J. Phys. A35, 951(2002], gives more accurate results than the rotating wave approximation and is
more universally applicable for these lattices. As an illustration, the method is applied here to several one- and
two-dimensional lattices.
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I. GENERAL IDEA It is important to note that in recent years discrete breath-
ers have been observed experimentally in a number of prob-
We consider the system described by the Hamiltonian lems ranging from Josephson junction arrays to nonlinear
optical waveguide systenjd].
A breather is defined as a time-periodic and spatially lo-

. 1, i o calized solution of Eq(2), i.e., us(t)=us(t+ 7) andu;—0
H_ﬁEEZd 2pﬁ+v(u“)+,ﬁ§Bﬁ WU~ ug), D as |A|—cc. For this definition to hold we require that;
=0 is a fixed point of Eq(2) andV’(0)=W’'(0)=0. Fol-
giving the equations of motion lowing other author$5], we introduce new variables; and
Ta(t) by
Ust V' (U= 2 W (up—ug), ¥V Aez (2 us(t) =asTa(t) @3
me ﬁ

and setT;(0)=1 without loss of generality. In these vari-
(dots denote differentiation with respect to time and primesables a breather is equivalent to a solution with the properties
denote dl_fferen_tlatlon_ with respect_ to the arg.u.n)amhere (1) TA(t)=Tx(t+7) (time periodid and (2) a;—0 as|f|
u;(t) e R is a dimensionless coordinate describing the posi-_, (spatially localized
tion of a pal’ticle at the lattice site indicated 5)@5 a func- In a one-dimensional Setting, the second propé@ﬂyis
tion of ime. WithZ we refer to the set of ati-dimensional  the definition of a homoclinic orbit in the spatial coordinate
vectors whose elements are integers and define the norm @ Thus, the method proposed in this paper has been inspired
this set agn||=={_,|n;|. With the setB; we denote the set by a family of numerical methods using homoclinic orbits in
of all possible vectorsne 7 for which |[m—n| =1 (i.e., the  two- or higher-dimensional maps to find breathgfs$]. As
set of nearest neighbors of the site denotecﬁ))_yThe po- will be shown, for one-dimensional lattices an approximation
tentialsV: R—R andW: R—R are referred to as the on- proposed by Tsironif9] gives far better approximations than
site and interaction potential, respectively. For one-the standard rotating wave methfc., using the ansafz;

dimensional lattices we tak&/(u,—u,)=W, (un,—u,) if ~ =cos@t) in Eq. (3)], while keeping the dimension of the
m>n and W(u,,—u,,)=W_(u,—u,) if m<n, with the recurrence relation lowequal to 2i) unlike the Fourier-
propertyW_ (x) =W_(—x). series expansion method which, in general, requires higher

These equations describe the motion of a system ofimensions to reach the same accuracy.
coupled particles on a@-dimensional lattice with nearest-  The approximation proposed by Tsironis can be written as
neighbor interactions. Since the late 1980s, it is known thak9]
these structures can sustain intrinsic localized modes, also
known as discrete breathdrs].

In 1994, a proof of their existence was given for a certain
class of one-dimensional lattices, which gave rise to a .= _ p R ] )
method for finding them using continuation from a suitableWith Ne Z® andme B;;. We can estimate a relative errr
limit in which the equations of motion become uncoupled?y dividing the difference between the left- and right-hand
[2,3]. Outside the region of applicability of this proof one Sides by the approximate value:
has to rely on numerical methods to find breathers. This pa-
per describes such a numerical method.

Un—Us~(am—an)Ts, 4
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This error is small if eithefa;| <|a;| and/orT~Ty. Thus, [l. APPLICATION TO ONE-DIMENSIONAL LATTICES
when using this approximation, we expect the largest error to
be made in the case thhd;|<|as| and T; is significantly
different from T;. However, in this case the amplitude at )
site i will not influence the calculation of the time function Un+ V' (Ug) =W (Upsg—Up) =W (Uy—Up—g)  (7)
at sitem since|a;|<|a| and hence this error is regarded as
unimportant for the overall accuracy. In the caag|~|a;|

we needT ;~ T to make the error small. We can split this in
two parts, fora;~a; and fora;~ —a;. As will be shown

In one dimension, the equations of motion are

(where we replacedV, by W to simplify notation which
after applying approximatiofd4) becomes

below, this can lead to forbidden combinations of neighbor- anTp+ V' (anTp) =W ((an11—an) Tn)

ing amplitudes, depending on the behaviofMgfand T ;. “W(a—a T 8
The approximatiorf4) transforms the equations of motion ((@r=an-2)Tn). ®

(2 to This can be written in terms of an effective potential as

. 5Veff(an van—1,an+1 !Tn)

To= o7 : €)
T ' ’ n
aiTatV' (@i T = 2 W(@z—anTa), (6
me B where
which is a second-order ordinary differential equati@DE) Vei(@n,an-1,an+1,Tn)
for T;. We restrict our solutions to time-reversible ones so 1
that we have sufficient initial copditionEan initial value =—2v(anTn)—mw((anﬂ—an)Tn)
T:(0)=1 and an initial derivativel ;(0)=0] to be able to an mentl o En

solve this ODE.

For certain potentialge.g., some potentials which are
low-order polynomials in their argumentan analytical so-
lution is possiblg9]. In this paper, we will not try to solve |t \/(x) andW(x) are even functions, the effective poten-
the ODE analytically. Instead, we shall exploit the fact thattjz| has the symmetry
the ODE (6) is overdetermined by fixing the period of the
solution 7.

We then use this extra information about the solution for Vet(@n+@n-1,8n+1,Tn) =Ver(—an,~8n-1,~8n+1,Tn).
Ts(t) of Eq. (6) to numerically determine a relation between 11

the amplitude at siten with the amplitudes of its nearest | gter on, this symmetry can be used to determine further
neighbors. Any set of values for tigg salisfying this recur-  symmetries between the amplitudes and time functions.
rence relation at each sité and simultaneously the  Returning to the discussion about the relative error in Sec.
asymptotic conditionra;—0 as|n[|— gives an approxi- |, we are now in a position to state that if the effective
mate breather solution to the original equations of motiorpotential V.z is even with respect toT, [i.e.,
(2), since knowledge of tha, completely determine$;(t) Veil(@n,an_1,8n+1:Tn) =Ver(@n,an_1,a8n+1,— Tn)l,  the
through Eq.(6). functionsT,, determined fora, anda,,= —a, are the same
When such an approximate solution has been found wsinceVgg(a,,an_1:8n+1,— Tn)= Ve —@n,an_1,8n+1+Tn)
improve the approximation using a Newton-Raphsonand thus the approximation will hold for the stronger case
method, finding a zero of the system of equatiangr)  |a,|~|a,|. If the effective potential is not even, only the
—u;(0)=0 for all n. If this method converges to a zero weaker case,~a, will yield accurate approximations.
within a tolerance limif10], we call the solution a numeri- We can therefore categorize the amplitudes of breathers in
cally exact breather. one-dimensional lattices found with this method in three
This paper is organized as follows: In Sec. Il, we showclasses:A, whose amplitudes are large and positive,
how the method works for one-dimensional lattices, in parwhose amplitudes are large and negative, Apdvhose am-
ticular Klein-Gordon latticedi.e., anharmonic on-site and plitudes are small compared to those of clagsesandA _ .
harmonic interaction potentigleand Fermi-Pasta-Ulam lat- In an even effective potential there is no restriction on the
tices (i.e., no on-site potential and anharmonic interactionclasses to which neighboring amplitudes belong. If the effec-
potential$. A comparison is made with the rotating wave tive potential is not even, we can only expect good results if
approximation in the case of a hadif potential in a Klein- an amplitude from clas8, or A_ is followed by an ampli-
Gordon lattice. In Sec. Ill, we apply the method to a two-tude of the same class or of the clas A similar distinc-
dimensional Klein-Gordon lattice. In Sec. IV, we give sometion of a breather’s amplitudes in such classes has proven
concluding remarks. The Appendix explains the numericabseful to a classification of breathers based on ideas of sym-
method used to find solutions to the recurrence relations. bolic dynamicq11].

+ mw((an— an-1)Th). (10
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A. Klein-Gordon lattices In the appendix an easily applied and very fast algorithm is
given, based on the ideas presented in Rf], to find large
numbers of homoclinic orbits. In order for E(L3) to have
any homoclinic orbits at all, we need the origin to be of the
saddle type. The eigenvalues of the map at the origin are

2
_4),
from which it is clear that a time-periodic solutiarn, with

period 7 depends on the two parametdrsa, . ,+a, ; and hence a necessary condition for a saddle(ig/da,)(0)
a,, for a certain coupling strengtf. The periodr is a 2 If this condition is not fulfilled, the origin will be of the

function of these two parameters, i.e=(f,a,). If this  center type. Consequently, one cannot approach the equilib-
function can be inverted we have=f(a, :7) which can be rium asn— * o and localized solutions are not possible.

For Klein-Gordon lattices, the interaction potential is har-
monic. Thus, we writeV(x)=(C/2)x?. The constanC is
referred to as the coupling strength. The ODE 1gr be-
comes

of
ga,

* (0)

. 1/ g
8Ty V' (anT) = Clan, 1+ 8y 1—22) Ty, (12) )\+=—(—(0)+

determined numericallyif not analytically, such that we By linearizing the equations of motion arouag=0 we
have a two-dimensional invertible map see thafl ,=2_, @ coskat) is the general solution. Insert-
ing this in the linearized equations we havéf/ga,)(0)
a..=f(a,:m—b =2+C Y V"(0)—k’w?] with k=1,2, ... . Therefore, we
. ontt n’ n (13  require eithetk’»?<V"(0) or k?w?>4C+V"(0) which is
Pni1=an. known as the nonresonance condition, since we can identify

, ) , ) . V"(0) with the ground frequency of the harmonic part of the
Inversion of the relationship betweerandf is possible i ,yential and the interval”(0)<k2w?<V"(0)+4C with
drldf#0 on an appropriate interva{CR, for anya, e X, the phonon ban{2].

through the inverse function theorem. We now make this
more explicit by deriving an expression fer First, we re- 1. A Klein-Gordon lattice with harde?* potential

write EqQ.(12) as . -
a.(12 As a first example, we present results for finding breathers

in a Klein-Gordon lattice with coupling strengt@=0.25
__ Ver(@n,f,Tn) (14  and on-site potential
: aT, ’

3
where V(x)= 2—Ox2+x4, (17)

a, Figure 1 shows how the method compares with the rotat-
ing wave approximation, using,=cos(t) on the same lat-
from which we infer thatf=0 if a,=0 to make Eq.(15) tice. To estimate the accuracy, we calculated preathers uging
compatible with Eq(12) ata,=0. Notice also that i/ is & Neéwton-Raphson method to solve the equations of motion
even with respect ta, one findsf(a,;7)=—f(—a,:7), for periodic solutions with homc_>cI|n|c qrblts as an |r_1|t|al
since Vr(a,  f(a,:7), Tr)=Vei(@,,f(an:7),— T, implies ~ 9UesS .for-the breathgr shape at titwe0. Since the effective
Vei(@n, f(an:7), T)=Ver(—a,,f(—a,:7),T,), in accor- potentl_al is even Wl.th. respect td, we can use any ho-
dance with Eq.(11) if the potentialsV(x) and W(x) are moclinic orbit as an initial guess. Then, we suppose that the

1 1 5 which is often referred to as a haetf potential.
Veff(an 1f’Tn): ?V(anTn)_ Z_C(f_zan)Tny (15)
n

even. breather shape locally follows a map of the fofifu,(0))
We can thus write an effective Hamiltonian for this sys- =Us+1(0)+U,-1(0) and compare the shape of the function
tem in the form f with f. For the case considered here, the method is
more accurate than the rotating wave approximation by a
1 factor of 2.
Heir=7Si+ Ven(@n, . Tn), (16

2. A Klein-Gordon lattice with soft Morse potential

with S, the generalized momentum correspondingTip. As a second example, we take a potential for which the

Introducing an action and an angle in the standard way, ODE is difficult to solve analytically, namely, the Morse po-

such thatH 4= Hx(1), we see that the frequency of motion tential

is w=dH/dl such that the period is=2m7w ™. The re-

quirementd7/df+0 is commonly referred to as the anhar- V(x)=[1—exp(—x)]2, (18)

monicity condition and needs to hold for al, e X [2]. In all

our calculations this condition holds for the range of ampli-usingC=0.01 for this Klein-GordonKG) lattice.

tudes considered. A rotating wave approximation witfl ,=cos(t) is not
Since the map is invertible, we can use the techniquepossible due to the asymmetry of the potential. Using a

presented in Ref.12] to find homaoclinic orbits of this map. Fourier-series method requires higher than two-dimensional
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FIG. 1. Accuracy results for a Klein-Gordon
lattice with hard¢* potential (17), C=0.25 and
the periodr=2(2.8) 2. The figure shows the
function f(a,)=a,.1+a,-1 as determined nu-

?":o merically using approximatiof) (dashed ling
§ by the rotating wave approximatiofsolid line)

and the datd(u,(0))=u,1(0)+u,_,(0) deter-
mined from breather solutionglots. The maxi-

T mum distance between the dots and the line using
approximation(4) is within 1% of the maximum
amplitude, whereas the rotating wave approxima-
. tion reaches only 2%.

=2k

mappings. Therefore, Tsironis’ approximation combined withthough the maximum absolute distance was observed to be
our homoclinic orbit approach is very well suited for this 7X 102 the average absolute distance was oriy1D 3. In
potential since we work with a two-dimensional map. How-Fig. 3, some of the shapes of the calculated breathers are
ever, since the effective potential is not even with respect t@iven.
T,, not all homoclinic orbits are suitable candidates for find-
ing breathers. We can only use those orbits whose neighbor-
ing amplitudes have the same sign or when one of them is For general lattices we have the effective potential:
very small compared to the other. Vei(@n,an-_1,8n+1:Tn)

In Fig. 2, we show the accuracy of this approach in the

B. General lattices and Fermi-Pasta-Ulam(FPU) lattices

same way as for the* potential in Fig. 1. We have also :i B B
compared the homoclinic orbits with their corres- a2 V(@nTn) an(anﬂ—an)w«an+l an)Tn)
ponding breathers by calculating the distance using the
max norm ||G(0)—a]|=maxu,(0)—a,, where (0 1
|| ( ) H )4 n( ) an|$ ) ) ( ) + — W((anianfl)Tn)- (19)
=(...,u_1(0),ug(0),us(0),...) and a likewise. Al- an(@n—an-1)
20 T T T T T
Vel
~
sk ’ N 1
/ AN
/ \
/ \
/ \
101 l’ \\ 1 FIG. 2. Accuracy results for a Klein-Gordon
1 \\ lattice with Morse potential18). Here, we use
D \ ! \ C=0.01 and the periodr=2(0.41) ¥?7. The
m‘: skY H \ ] figure shows the functioh(a,)=a,,+a,_; as
< \ é \. determined numericallydashed ling and the
\ ! N data F(u,(0))=u,, ,(0)+u, ;(0) determined
ok ‘ ; \ i from the exact breather solution@ots. The
\ maximum distance between the dots and the line
' ] \ is within 5% of the maximum amplitude.
\
-5 \ ; \
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FIG. 3. Several simple breather shapes determined with the method presented here for the Morse(f:8témizaKlein-Gordon lattice.

The coupling strength i€=0.01 and the periogd=2(0.41) Y?7. The maximum observed absolute distance on a site between a homoclinic

orbit and the corresponding breathee., maju,(0)—a,|) is 7X 10”2 which is 4.5% of the breather amplitude at that site. On average, the

observed maximum distance is<20 3.

In order to apply the methods from Rdfl2] to find ho- of amplitudes considered. The nonresonance condition is de-

moclinic orbits we need to define a map and its inverserived with the coupling strengt@ now replaced byV’(0) in

Therefore, we first use the extra knowledge of the perit@  comparison with KG lattices, as can be seen by linearizing

determinea,,=f(a,,a,_1;7) anda,_=9(a,,a,.1;7)- the effective potential/+ arounda,,=0 for small perturba-

Thus, we can define a map for the amplitudgsas tionsa, ., anda,_,. Thus, we need eithdw?<V"(0) or
k?w?>4W"(0)+V"(0).

.(a”“_ f(an,bn:7) (20) An FPU lattice with hard ¢* potential

Bn+1=2an In Fig. 4, several breather shapes for a Fermi-Pasta-Ulam

lattice [i.e., the on-site potentia¥(x)=0] with a hard ¢*

and its inverse . . )
interaction potential

_1::an1:g(anybn;7) 21) 3
bn-1=ayn. W(X)= ==x?+x* (22)
20
Existence conditions for the functiof@ndg are equiva-
lent to the ones derived for KG lattices. The anharmonicityare given. The effective potential is even with respect o

condition becomegr/da, . 1#0 anddr/da,_1#0. In our  such that all homoclinic orbits calculated should give accu-
investigations this condition is always fulfilled for the range rate approximations of breathers.
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-10 -5

sof
sof

FIG. 4. Several breather shapes determined with the method presented here for #é patehtial(22) in a Fermi-Pasta-Ulam lattice.
The period isr=2(2.8)” Y. The maximum observed absolute distance on a site between a homoclinic orbit and the corresponding breather
is maju,(0)—a,|=5%x10"2 which is about 1% of the maximum amplitude raf0)|.

The functionf is a function of two variables and is shown with (n,m) e ZX Z. After insertingu,, n(t) =a, mTh m(t) and
in Fig. 5. Notice that since the interaction potenti#lis  applying approximatiort4), the ODE forT, ,, becomes
symmetric with the propertyW(x) =W(—x), the functiong
is identical tof with the role ofa,, ; anda,_; interchanged.

Furthermore, due to Eq(1l), we have the symmetry

f(x,y)=—f(—x,—y) for all (x,y) e RXR. Comparison of an,an,m+V'(an,an,m)

homoclinic orbits and breathers using the max norm shows , )

an accuracy of about 1% distance relative to the largest am- =[W (ans1m—anm) t W (an-1m—2anm
litude. / /

P +W (an,m+1_an,m)+w (an,mfl_an,m)]Tn,m-

11l. APPLICATION TO TWO-DIMENSIONAL LATTICES (24)
We consider now a two-dimensional lattice with one de-
gree of freedom per lattice sif¢3]. The equations of motion For general interaction potentiaM/(x) one derives four
are separate recurrence relations using knowledge of the period
7 to determine functions foa,.1m, @8-1m, @8ym+1, and
. an m—1, respectively. It is again possible to write the problem
Un,mT V' (Unm) =W (Ut 1= Unm) =W (Up—1m= Unm) in an effective potential setting. The statements about which
solutions to the recurrence relations are accurate approxima-
tions to breather solutions hold exactly as for one-
+W' (Up m—1—Unm), (23 dimensional Klein-Gordon latticesee Sec. )l

+W’ (un,m+l_ un,m)
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A. A two-dimensional Klein-Gordon lattice
with hard ¢* potential

In case of a harmonic interaction potentiaé., a Klein-
Gordon lattice, the ODE is reduced to

an,an,m+ A (an,an,m) = C(an+ 1,m+ an—l,m+ Anm+1

+ Anm-1— 4'an,m)Tn,m ) (25)

-5 -5 Om

PHYSICAL REVIEW B57, 026703 (2003

FIG. 5. The functiona,,
=f(a,,a,_1;7) for a Fermi-
Pasta-Ulam lattice with a hargl*
potential (22). The functiona,_
=g(a,,a,_1;7) is identical tof
with the role ofa,_; anda,. 4 in-
terchanged, due to the potential
being even.

such that we need to determine only a single function
(An+1mtan-1mtanme1tanm-—1)=f(anm:7). Anharmo-
nicity and nonresonance conditions can be derived as easily
as for one-dimensional lattices and are also checked to hold
in all cases studied.

Setting the couplingc=0.25 and the on-site potential to
be the familiar hards* potential(17), we first determine this
functionf. Using the techniques described in the Appendix,
several solutions to the recursion relations

FIG. 6. The shape of a breather in a two-dimensional lattice with potential. The coupling iSC=0.25 and the periodr
=2(2.8) Y27, Left: A three-dimensional image of the breather amplitudgs, at timet=0. Right: A projection on a two-dimensional
plane, with colors indicating the relative valueswpf.,(0), with lighter shades indicating higher values. The difference between the solution
of the recurrence relatiorithe “homoclinic plane’) and the breather, measured by fgx(0)—a, |, is 6.7X 103, which is about 0.5% of

the maximum amplitude méx, ,(0)|.
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n=23o0 (1] VaVa VAV VW L AVAVAVAVAY A 1] VAV Vo VLV 0

-1 -1 -1 -1 -1 -1
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
1 1 1 1 1 1

0 pmman~d 0NV 0 oNVVWW o o
-1 -1 -1 -1 -1 -1
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 FIG. 7. Time evolution of the
1 1 1 1 1 1 breather in a two-dimensional lat-
tice with ¢* potential, whose
0 OMVVWWV 0 /VVWV\ 0 WVVVV 0 0 shape is depicted in Fig. 6. Shown
-1 -1 -1 -1 -1 -1 here are the first six periods of the
0o 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 breather evolution. Each image
1 1 1 1 1 1 showsu, n(t), wheren goes from
N = 0o~~~ OV 0 0 MMM ofsnnnns 1 10 3 (botiom fo top andm
] ; ] ] ] ] from —2 to 3 (left to right).

u, ot opanant OV o MWW oy o
-1 -1 -1 -1 -1 -1

20 0 10 20 0 10 20 0 10 20
m=0 m=3

A mtan 1mtaymeitanm 1=f(a,m;7) (26)  which cosines are clearly the wrong basis function, for in-
' ' ' ' ’ stance when dealing with asymmetric potentials. Further-
under the asymptotic conditions more, the method presented here uses the lowest possible
dimension of the recurrence relatiofi%., the same dimen-
sion as the equation of motion, when seen as a recurrence

lim a,,=0, V m relation in function space for the;(t)].
n— = In many cases, the way to find solutions to the recurrence
im a,,=0, V n, 27) relations can be applied as presented in the Appendix. When
mo+o this is not possible, one can resort to more reliable methods

such as the ones presented in R&2]. The computation of
have been constructed. Such a solution might be called these solutions requires relatively little effort, considering the
“homoclinic plane” in analogy with the name “homoclinic complexity and accuracy of the solutions found in compari-
orbit” in one dimension. Since the effective potential for this son to the breathers being approximated. Based on the dis-
problem is even, all homoclinic planes should give accurateussion of the relative error made when using approximation
approximations to breather solutions anti(a,;7)  (4), we were able to predict which solutions would give ac-
=—f(—anm;7). Using these approximations, breathers cancurate approximations. All results confirmed these predic-
be found using a Newton-Raphson method. In Figs. 6 and &jons.
the shape and behavior of one such solution is presented. The Determining the recurrence relations themselves is a very
difference between the homoclinic plane and the breather itewarding task on its own. Once they are determined for a
about 6.7 10 3, measured with the max norm njax(0)  certain set of on-site potentials and interaction potentials as
—anm- well as a specific period, one can generate an infinite number
of solutions by the techniques mentioned above. Therefore,
IV. CONCLUDING REMARKS Ia_rge nur_nbers of numeri_cally accurate bre_athers in lattices
with a single scalar variable per lattice site and nearest-
In this paper, we have shown that using recurrence relaaeighbor interactions can be generated using this method, in
tions with appropriate asymptotic conditions is a useful toola relatively short time.
for approximating breather solutions in one- and two- Finally, identifying the stability of these localized solu-
dimensional lattices. The conjecture is made that this can bions is a problem of great interest, especially with a view
done for higher dimensions as well, as long as there is only sowards applications and experiments. In a future publica-
single scalar variable per lattice site. Our work also showsion, we intend to return to this question not only using linear
that Tsironis’ approximatiof9] gives more accurate approxi- stability analysis but also applying more global methods to
mations than the rotating wave approximation with a singleexplore the extent of the stability region of breathers in phase
cosine as basis function. It can also be applied to lattices fospace.
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the Mathematics Institute of the University of Warwick. This Of generality, we can choose this site to be the origin0.
research has also been supported by a “Karatheodory” Grar/e solve(numerically Eq. (A1) with n=0 for a;. This is a
No. 2464 of the University of Patras as well as a Scientificsingle equation with a single unknown, but, in general, with
Collaboration Program of the Greek Ministry of Develop- several solutions foa;_,. Each of these solutions now de-

ment. fines a member 0©; and is a suitable initial condition for
applying a Newton-Raphson search. The numerically exact
APPENDIX: SOLVING THE RECURRENCE RELATIONS solutions found by this procedure obey the recurrence rela-

tions and the boundary conditions. Each of these can be the
In the following, we present a fast method for computingseed for a new generation of solutions, obtained in the same
solutions of a system of recurrence relations way as above, but with the allowed freedom at a different
site, if the mapM is the identity map.
This method for solving EqA1) was also mentioned in
f(a;)+ E g(ap—a;)=0, V neZzd, (A1)  the context of homoclinic orbits in the concluding remarks of
me By Ref.[12]. In the spirit of that paper, the operatht can be
_ ) chosen in such a way as to generate a well-defined family of
with a;eR, f: R—R, and g R—R with 1(0)=9(0)  sojutions preserving a symmetry. For the one-dimensional
=0, under the asymptotic conditiay—0 as|n|—= with  |attices of Sec. II, this operatovl can be a shift matrix,
the norm.onZd defined a$|ﬁ||:2?=1|ni|- . preserving, e.g., the symmetay,=a_,, if M is such that
. .For this nurTlencaI c(:jalculat!on, we limit .ourselves to aanil:_an for n<_0 a!”d én+1:an for n>_0, with the_hat
finite subspacene SCZ°. If this subspace is taken large genoting a solution in the new generation. By allowing the
enough, we can set the boundary condition suchagato it site at the origin to regain its freedom we generatarting
ne dS, since the boundaries will have no influence on thefrom O,) all symmetric homoclinic orbits of the two-
behavior of the solution in the numerical method proposediimensional map, with the symmetay=a_,,.
below. Numerical solutions of EGA1) can be found starting Using the ideas of Ref12] we can as easily determine
from an initial guess using a Newton-Raphson method. Asisymmetrichomoclinic orbits as long as the map is invert-
shown by Beyn and Kleinkauf, this method converges if aible. For higher-dimensional lattices, similar methods can be
solution is present, in the case of finite-dimensional mapderived. Application of this method is limited by the exis-
pings[14]. We conjecture that this holds also in the case oftence of solutions for the amplitude of the free lattice site. If
Eq. (Al). The idea of the method is to provide accurate ini-there are no solutions, one has to resort to the full method for
tial conditions for a Newton-Raphson search. finding homoclinic orbits in the case of one-dimensional lat-
Observe first thaf;=0 for all ne Sis an exact solution tices or to make a guess about approximate solutions for
of Eg. (Al). We call this the initial see®,. The first gen- higher-dimensional lattices and depend on the convergence
eration of solutionsO; is found as follows. First, we set of the Newton-Raphson scheme.
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