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Numerical approximation of breathers in lattices with nearest-neighbor interactions

J. M. Bergamin*
Department of Mathematics, University of Patras, 26500 Patras, Greece

~Received 9 October 2002; published 21 February 2003!

A numerical method is presented for accurately approximating time-periodic and spatially localized solu-
tions known as~discrete! breathers, of the equations of motion describing lattices with one degree-of-freedom
per lattice site and nearest-neighbor interactions. Our method is an extension of an approximation suggested by
Tsironis@J. Phys. A35, 951 ~2002!#, gives more accurate results than the rotating wave approximation and is
more universally applicable for these lattices. As an illustration, the method is applied here to several one- and
two-dimensional lattices.
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I. GENERAL IDEA

We consider the system described by the Hamiltonian

H5 (
nW PZd

1

2
pnW

21V~unW !1 (
mW PBnW

W~umW 2unW !, ~1!

giving the equations of motion

ünW1V8~unW !5 (
mW PBnW

W8~umW 2unW !, ; nW PZd ~2!

~dots denote differentiation with respect to time and prim
denote differentiation with respect to the argument! where
unW(t)PR is a dimensionless coordinate describing the po
tion of a particle at the lattice site indicated bynW as a func-
tion of time. WithZd we refer to the set of alld-dimensional
vectors whose elements are integers and define the norm
this set asinW i5( i 51

d uni u. With the setBnW we denote the se
of all possible vectorsmW PZd for which imW 2nW i51 ~i.e., the
set of nearest neighbors of the site denoted bynW ). The po-
tentialsV: R→R and W: R→R are referred to as the on
site and interaction potential, respectively. For on
dimensional lattices we takeW(um2un)5W1(um2un) if
m.n and W(um2un)5W2(um2un) if m,n, with the
propertyW1(x)5W2(2x).

These equations describe the motion of a system
coupled particles on ad-dimensional lattice with neares
neighbor interactions. Since the late 1980s, it is known t
these structures can sustain intrinsic localized modes,
known as discrete breathers@1#.

In 1994, a proof of their existence was given for a cert
class of one-dimensional lattices, which gave rise to
method for finding them using continuation from a suitab
limit in which the equations of motion become uncoupl
@2,3#. Outside the region of applicability of this proof on
has to rely on numerical methods to find breathers. This
per describes such a numerical method.
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It is important to note that in recent years discrete brea
ers have been observed experimentally in a number of p
lems ranging from Josephson junction arrays to nonlin
optical waveguide systems@4#.

A breather is defined as a time-periodic and spatially
calized solution of Eq.~2!, i.e., unW(t)5unW(t1t) andunW→0
as inW i→`. For this definition to hold we require thatunW

50 is a fixed point of Eq.~2! andV8(0)5W8(0)50. Fol-
lowing other authors@5#, we introduce new variablesanW and
TnW(t) by

unW~ t !5anWTnW~ t ! ~3!

and setTnW(0)51 without loss of generality. In these var
ables a breather is equivalent to a solution with the proper
~1! TnW(t)5TnW(t1t) ~time periodic! and ~2! anW→0 as inW i
→` ~spatially localized!.

In a one-dimensional setting, the second property@6# is
the definition of a homoclinic orbit in the spatial coordina
n. Thus, the method proposed in this paper has been insp
by a family of numerical methods using homoclinic orbits
two- or higher-dimensional maps to find breathers@7,8#. As
will be shown, for one-dimensional lattices an approximati
proposed by Tsironis@9# gives far better approximations tha
the standard rotating wave method@i.e., using the ansatzTnW

5cos(vt) in Eq. ~3!#, while keeping the dimension of th
recurrence relation low~equal to 2d) unlike the Fourier-
series expansion method which, in general, requires hig
dimensions to reach the same accuracy.

The approximation proposed by Tsironis can be written
@9#

umW 2unW'~amW 2anW !TnW , ~4!

with nW PZd andmW PBnW . We can estimate a relative errorE
by dividing the difference between the left- and right-ha
sides by the approximate value:

E5U~amW 2anW !TnW2amW TmW 1anWTnW

~amW 2anW !TmW
U5U amW

amW 2anW
UUTnW

TmW
21U .

~5!
©2003 The American Physical Society03-1
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J. M. BERGAMIN PHYSICAL REVIEW E67, 026703 ~2003!
This error is small if eitheruamW u!uanW u and/orTmW 'TnW . Thus,
when using this approximation, we expect the largest erro
be made in the case thatuanW u!uamW u and TnW is significantly
different from TmW . However, in this case the amplitude
site nW will not influence the calculation of the time functio
at sitemW sinceuanW u!uamW u and hence this error is regarded
unimportant for the overall accuracy. In the caseuamW u'uanW u
we needTmW 'TnW to make the error small. We can split this
two parts, foramW 'anW and foramW '2anW . As will be shown
below, this can lead to forbidden combinations of neighb
ing amplitudes, depending on the behavior ofTnW andTmW .

The approximation~4! transforms the equations of motio
~2! to

anW T̈nW1V8~anWTnW !5 (
mW PBnW

W8„~amW 2anW !TnW…, ~6!

which is a second-order ordinary differential equation~ODE!
for TnW . We restrict our solutions to time-reversible ones
that we have sufficient initial conditions@an initial value

TnW(0)51 and an initial derivativeṪnW(0)50] to be able to
solve this ODE.

For certain potentials~e.g., some potentials which ar
low-order polynomials in their arguments! an analytical so-
lution is possible@9#. In this paper, we will not try to solve
the ODE analytically. Instead, we shall exploit the fact th
the ODE ~6! is overdetermined by fixing the period of th
solutiont.

We then use this extra information about the solution
TnW(t) of Eq. ~6! to numerically determine a relation betwee
the amplitude at sitenW with the amplitudes of its neares
neighbors. Any set of values for theanW satisfying this recur-
rence relation at each sitenW and simultaneously the
asymptotic conditionanW→0 as inW i→` gives an approxi-
mate breather solution to the original equations of mot
~2!, since knowledge of theaW n completely determinesTnW(t)
through Eq.~6!.

When such an approximate solution has been found
improve the approximation using a Newton-Raphs
method, finding a zero of the system of equationsunW(t)
2unW(0)50 for all nW . If this method converges to a zer
within a tolerance limit@10#, we call the solution a numeri
cally exact breather.

This paper is organized as follows: In Sec. II, we sh
how the method works for one-dimensional lattices, in p
ticular Klein-Gordon lattices~i.e., anharmonic on-site an
harmonic interaction potentials! and Fermi-Pasta-Ulam lat
tices ~i.e., no on-site potential and anharmonic interact
potentials!. A comparison is made with the rotating wav
approximation in the case of a hardf4 potential in a Klein-
Gordon lattice. In Sec. III, we apply the method to a tw
dimensional Klein-Gordon lattice. In Sec. IV, we give som
concluding remarks. The Appendix explains the numeri
method used to find solutions to the recurrence relations
02670
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II. APPLICATION TO ONE-DIMENSIONAL LATTICES

In one dimension, the equations of motion are

ün1V8~un!5W8~un112un!2W8~un2un21! ~7!

~where we replacedW1 by W to simplify notation! which
after applying approximation~4! becomes

anT̈n1V8~anTn!5W8„~an112an!Tn…

2W8„~an2an21!Tn…. ~8!

This can be written in terms of an effective potential as

T̈n52
]Veff~an ,an21 ,an11 ,Tn!

]Tn
, ~9!

where

Veff~an ,an21 ,an11 ,Tn!

5
1

an
2

V~anTn!2
1

an~an112an!
W„~an112an!Tn…

1
1

an~an2an21!
W„~an2an21!Tn…. ~10!

If V(x) andW(x) are even functions, the effective pote
tial has the symmetry

Veff~an ,an21 ,an11 ,Tn!5Veff~2an ,2an21 ,2an11 ,Tn!.
~11!

Later on, this symmetry can be used to determine furt
symmetries between the amplitudes and time functions.

Returning to the discussion about the relative error in S
I, we are now in a position to state that if the effectiv
potential Veff is even with respect to Tn @i.e.,
Veff(an ,an21 ,an11 ,Tn)5Veff(an ,an21 ,an11 ,2Tn)], the
functionsTn determined foran and am52an are the same
sinceVeff(an ,an21 ,an11 ,2Tn)5Veff(2an ,an21 ,an11 ,Tn)
and thus the approximation will hold for the stronger ca
uamu'uanu. If the effective potential is not even, only th
weaker caseam'an will yield accurate approximations.

We can therefore categorize the amplitudes of breather
one-dimensional lattices found with this method in thr
classes:A1 whose amplitudes are large and positive,A2

whose amplitudes are large and negative, andA0 whose am-
plitudes are small compared to those of classesA1 andA2 .
In an even effective potential there is no restriction on
classes to which neighboring amplitudes belong. If the eff
tive potential is not even, we can only expect good result
an amplitude from classA1 or A2 is followed by an ampli-
tude of the same class or of the classA0. A similar distinc-
tion of a breather’s amplitudes in such classes has pro
useful to a classification of breathers based on ideas of s
bolic dynamics@11#.
3-2
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NUMERICAL APPROXIMATION OF BREATHERS IN . . . PHYSICAL REVIEW E67, 026703 ~2003!
A. Klein-Gordon lattices

For Klein-Gordon lattices, the interaction potential is h
monic. Thus, we writeW(x)5(C/2)x2. The constantC is
referred to as the coupling strength. The ODE forTn be-
comes

anT̈n1V8~anTn!5C~an111an2122an!Tn , ~12!

from which it is clear that a time-periodic solutionTn with
periodt depends on the two parametersf 5an111an21 and
an , for a certain coupling strengthC. The periodt is a
function of these two parameters, i.e.,t5t( f ,an). If this
function can be inverted we havef 5 f (an ;t) which can be
determined numerically~if not analytically!, such that we
have a two-dimensional invertible map

M :H an115 f ~an ;t!2bn

bn115an .
~13!

Inversion of the relationship betweent andf is possible if
]t/] f Þ0 on an appropriate intervalX,R, for any anPX,
through the inverse function theorem. We now make t
more explicit by deriving an expression fort. First, we re-
write Eq. ~12! as

T̈n52
]Veff~an , f ,Tn!

]Tn
, ~14!

where

Veff~an , f ,Tn!5
1

an
2

V~anTn!2
1

2an
C~ f 22an!Tn

2 , ~15!

from which we infer thatf 50 if an50 to make Eq.~15!
compatible with Eq.~12! at an50. Notice also that ifVeff is
even with respect toTn one finds f (an ;t)52 f (2an ;t),
since Veff„an , f (an ;t),Tn…5Veff„an , f (an ;t),2Tn… implies
Veff„an , f (an ;t),Tn…5Veff„2an , f (2an ;t),Tn…, in accor-
dance with Eq.~11! if the potentialsV(x) and W(x) are
even.

We can thus write an effective Hamiltonian for this sy
tem in the form

Heff5
1

2
Sn

21Veff~an , f ,Tn!, ~16!

with Sn the generalized momentum corresponding toTn .
Introducing an actionI and an angleu in the standard way
such thatHeff5Heff(I ), we see that the frequency of motio
is v5dH/dI such that the period ist52pv21. The re-
quirementdt/d fÞ0 is commonly referred to as the anha
monicity condition and needs to hold for allanPX @2#. In all
our calculations this condition holds for the range of amp
tudes considered.

Since the map is invertible, we can use the techniq
presented in Ref.@12# to find homoclinic orbits of this map
02670
-
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In the appendix an easily applied and very fast algorithm
given, based on the ideas presented in Ref.@12#, to find large
numbers of homoclinic orbits. In order for Eq.~13! to have
any homoclinic orbits at all, we need the origin to be of t
saddle type. The eigenvalues of the map at the origin ar

l65
1

2 S ] f

]an
~0!6AS ] f

]an
~0! D 2

24D ,

hence a necessary condition for a saddle isu(] f /]an)(0)u
.2. If this condition is not fulfilled, the origin will be of the
center type. Consequently, one cannot approach the equ
rium asn→6` and localized solutions are not possible.

By linearizing the equations of motion aroundan50 we
see thatTn5(k51

` akcos(kvt) is the general solution. Insert
ing this in the linearized equations we have (] f /]an)(0)
521C21@V9(0)2k2v2# with k51,2, . . . . Therefore, we
require eitherk2v2,V9(0) or k2v2.4C1V9(0) which is
known as the nonresonance condition, since we can iden
V9(0) with the ground frequency of the harmonic part of t
potential and the intervalV9(0)<k2v2<V9(0)14C with
the phonon band@2#.

1. A Klein-Gordon lattice with hardf4 potential

As a first example, we present results for finding breath
in a Klein-Gordon lattice with coupling strengthC50.25
and on-site potential

V~x!5
3

20
x21x4, ~17!

which is often referred to as a hardf4 potential.
Figure 1 shows how the method compares with the ro

ing wave approximation, usingTn5cos(vt) on the same lat-
tice. To estimate the accuracy, we calculated breathers u
a Newton-Raphson method to solve the equations of mo
for periodic solutions with homoclinic orbits as an initia
guess for the breather shape at timet50. Since the effective
potential is even with respect toTn we can use any ho
moclinic orbit as an initial guess. Then, we suppose that
breather shape locally follows a map of the formf̂ „un(0)…
5un11(0)1un21(0) and compare the shape of the functi
f̂ with f. For the case considered here, the method
more accurate than the rotating wave approximation b
factor of 2.

2. A Klein-Gordon lattice with soft Morse potential

As a second example, we take a potential for which
ODE is difficult to solve analytically, namely, the Morse p
tential

V~x!5@12exp~2x!#2, ~18!

usingC50.01 for this Klein-Gordon~KG! lattice.
A rotating wave approximation withTn5cos(vt) is not

possible due to the asymmetry of the potential. Using
Fourier-series method requires higher than two-dimensio
3-3
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FIG. 1. Accuracy results for a Klein-Gordo
lattice with hardf4 potential~17!, C50.25 and
the periodt52(2.8)21/2p. The figure shows the
function f (an)5an111an21 as determined nu-
merically using approximation~4! ~dashed line!,
by the rotating wave approximation~solid line!

and the dataf̂ „un(0)…5un11(0)1un21(0) deter-
mined from breather solutions~dots!. The maxi-
mum distance between the dots and the line us
approximation~4! is within 1% of the maximum
amplitude, whereas the rotating wave approxim
tion reaches only 2%.
ith
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mappings. Therefore, Tsironis’ approximation combined w
our homoclinic orbit approach is very well suited for th
potential since we work with a two-dimensional map. Ho
ever, since the effective potential is not even with respec
Tn , not all homoclinic orbits are suitable candidates for fin
ing breathers. We can only use those orbits whose neigh
ing amplitudes have the same sign or when one of them
very small compared to the other.

In Fig. 2, we show the accuracy of this approach in
same way as for thef4 potential in Fig. 1. We have als
compared the homoclinic orbits with their corre
ponding breathers by calculating the distance using
max norm iuW (0)2aW i5maxuun(0)2anu, where uW (0)
5„ . . . ,u21(0),u0(0),u1(0), . . .… and aW likewise. Al-
02670
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though the maximum absolute distance was observed to
731022 the average absolute distance was only 731023. In
Fig. 3, some of the shapes of the calculated breathers
given.

B. General lattices and Fermi-Pasta-Ulam„FPU… lattices

For general lattices we have the effective potential:
Veff~an ,an21 ,an11 ,Tn!

5
1

an
2

V~anTn!2
1

an~an112an!
W„~an112an!Tn…

1
1

an~an2an21!
W„~an2an21!Tn…. ~19!
n

ine
FIG. 2. Accuracy results for a Klein-Gordo
lattice with Morse potential~18!. Here, we use
C50.01 and the periodt52(0.41)21/2p. The
figure shows the functionf (an)5an111an21 as
determined numerically~dashed line! and the

data f̂ „un(0)…5un11(0)1un21(0) determined
from the exact breather solutions~dots!. The
maximum distance between the dots and the l
is within 5% of the maximum amplitude.
3-4
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FIG. 3. Several simple breather shapes determined with the method presented here for the Morse potential~18! in a Klein-Gordon lattice.
The coupling strength isC50.01 and the periodt52(0.41)21/2p. The maximum observed absolute distance on a site between a homo
orbit and the corresponding breather~i.e., maxuun(0)2anu) is 731022 which is 4.5% of the breather amplitude at that site. On average
observed maximum distance is 731023.
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In order to apply the methods from Ref.@12# to find ho-
moclinic orbits we need to define a map and its inver
Therefore, we first use the extra knowledge of the periodt to
determinean115 f (an ,an21 ;t) and an215g(an ,an11 ;t).
Thus, we can define a map for the amplitudesan as

M :H an115 f ~an ,bn ;t!

bn115an
~20!

and its inverse

M 21:H an215g~an ,bn ;t!

bn215an .
~21!

Existence conditions for the functionsf andg are equiva-
lent to the ones derived for KG lattices. The anharmonic
condition becomes]t/]an11Þ0 and]t/]an21Þ0. In our
investigations this condition is always fulfilled for the ran
02670
.

y

of amplitudes considered. The nonresonance condition is
rived with the coupling strengthC now replaced byW9(0) in
comparison with KG lattices, as can be seen by lineariz
the effective potentialVeff aroundan50 for small perturba-
tions an11 andan21. Thus, we need eitherk2v2,V9(0) or
k2v2.4W9(0)1V9(0).

An FPU lattice with hard f4 potential

In Fig. 4, several breather shapes for a Fermi-Pasta-U
lattice @i.e., the on-site potentialV(x)50] with a hardf4

interaction potential

W~x!5
3

20
x21x4 ~22!

are given. The effective potential is even with respect toTn ,
such that all homoclinic orbits calculated should give ac
rate approximations of breathers.
3-5
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FIG. 4. Several breather shapes determined with the method presented here for the hardf4 potential~22! in a Fermi-Pasta-Ulam lattice
The period ist52(2.8)21/2p. The maximum observed absolute distance on a site between a homoclinic orbit and the corresponding
is maxuun(0)2anu5531023 which is about 1% of the maximum amplitude maxuun(0)u.
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The functionf is a function of two variables and is show
in Fig. 5. Notice that since the interaction potentialW is
symmetric with the propertyW(x)5W(2x), the functiong
is identical tof with the role ofan11 andan21 interchanged.
Furthermore, due to Eq.~11!, we have the symmetry
f (x,y)52 f (2x,2y) for all (x,y)PR3R. Comparison of
homoclinic orbits and breathers using the max norm sho
an accuracy of about 1% distance relative to the largest
plitude.

III. APPLICATION TO TWO-DIMENSIONAL LATTICES

We consider now a two-dimensional lattice with one d
gree of freedom per lattice site@13#. The equations of motion
are

ün,m1V8~un,m!5W8~un11,m2un,m!1W8~un21,m2un,m!

1W8~un,m112un,m!

1W8~un,m212un,m!, ~23!
02670
s
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-

with (n,m)PZ3Z. After insertingun,m(t)5an,mTn,m(t) and
applying approximation~4!, the ODE forTn,m becomes

an,mT̈n,m1V8~an,mTn,m!

5@W8~an11,m2an,m!1W8~an21,m2an,m!

1W8~an,m112an,m!1W8~an,m212an,m!#Tn,m .

~24!

For general interaction potentialsW(x) one derives four
separate recurrence relations using knowledge of the pe
t to determine functions foran11,m , an21,m , an,m11, and
an,m21, respectively. It is again possible to write the proble
in an effective potential setting. The statements about wh
solutions to the recurrence relations are accurate approx
tions to breather solutions hold exactly as for on
dimensional Klein-Gordon lattices~see Sec. II!.
3-6
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FIG. 5. The function an11

5 f (an ,an21 ;t) for a Fermi-
Pasta-Ulam lattice with a hardf4

potential ~22!. The functionan21

5g(an ,an21 ;t) is identical to f
with the role ofan21 andan11 in-
terchanged, due to the potentia
being even.
ion

sily
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A. A two-dimensional Klein-Gordon lattice
with hard f4 potential

In case of a harmonic interaction potential~i.e., a Klein-
Gordon lattice!, the ODE is reduced to

an,mT̈n,m1V8~an,mTn,m!5C~an11,m1an21,m1an,m11

1an,m2124an,m!Tn,m , ~25!
02670
such that we need to determine only a single funct
(an11,m1an21,m1an,m111an,m21)5 f (an,m ;t). Anharmo-
nicity and nonresonance conditions can be derived as ea
as for one-dimensional lattices and are also checked to
in all cases studied.

Setting the couplingC50.25 and the on-site potential t
be the familiar hardf4 potential~17!, we first determine this
function f. Using the techniques described in the Append
several solutions to the recursion relations
l
ution
FIG. 6. The shape of a breather in a two-dimensional lattice withf4 potential. The coupling isC50.25 and the periodt
52(2.8)21/2p. Left: A three-dimensional image of the breather amplitudesun,m at time t50. Right: A projection on a two-dimensiona
plane, with colors indicating the relative values ofun,m(0), with lighter shades indicating higher values. The difference between the sol
of the recurrence relations~the ‘‘homoclinic plane’’! and the breather, measured by maxuun,m(0)2an,mu, is 6.731023, which is about 0.5% of
the maximum amplitude maxuun,m(0)u.
3-7
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FIG. 7. Time evolution of the
breather in a two-dimensional lat
tice with f4 potential, whose
shape is depicted in Fig. 6. Show
here are the first six periods of th
breather evolution. Each imag
showsun,m(t), wheren goes from
21 to 3 ~bottom to top! and m
from 22 to 3 ~left to right!.
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an11,m1an21,m1an,m111an,m215 f ~an,m ;t! ~26!

under the asymptotic conditions

lim
n→6`

an,m50, ; m

lim
m→6`

an,m50, ; n, ~27!

have been constructed. Such a solution might be calle
‘‘homoclinic plane’’ in analogy with the name ‘‘homoclinic
orbit’’ in one dimension. Since the effective potential for th
problem is even, all homoclinic planes should give accur
approximations to breather solutions andf (an,m ;t)
52 f (2an,m ;t). Using these approximations, breathers c
be found using a Newton-Raphson method. In Figs. 6 an
the shape and behavior of one such solution is presented
difference between the homoclinic plane and the breathe
about 6.731023, measured with the max norm maxuun,m(0)
2an,mu.

IV. CONCLUDING REMARKS

In this paper, we have shown that using recurrence r
tions with appropriate asymptotic conditions is a useful t
for approximating breather solutions in one- and tw
dimensional lattices. The conjecture is made that this can
done for higher dimensions as well, as long as there is on
single scalar variable per lattice site. Our work also sho
that Tsironis’ approximation@9# gives more accurate approx
mations than the rotating wave approximation with a sin
cosine as basis function. It can also be applied to lattices
02670
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which cosines are clearly the wrong basis function, for
stance when dealing with asymmetric potentials. Furth
more, the method presented here uses the lowest pos
dimension of the recurrence relations@i.e., the same dimen
sion as the equation of motion, when seen as a recurre
relation in function space for theunW(t)].

In many cases, the way to find solutions to the recurre
relations can be applied as presented in the Appendix. W
this is not possible, one can resort to more reliable meth
such as the ones presented in Ref.@12#. The computation of
these solutions requires relatively little effort, considering t
complexity and accuracy of the solutions found in compa
son to the breathers being approximated. Based on the
cussion of the relative error made when using approxima
~4!, we were able to predict which solutions would give a
curate approximations. All results confirmed these pred
tions.

Determining the recurrence relations themselves is a v
rewarding task on its own. Once they are determined fo
certain set of on-site potentials and interaction potentials
well as a specific period, one can generate an infinite num
of solutions by the techniques mentioned above. Theref
large numbers of numerically accurate breathers in latti
with a single scalar variable per lattice site and neare
neighbor interactions can be generated using this metho
a relatively short time.

Finally, identifying the stability of these localized solu
tions is a problem of great interest, especially with a vie
towards applications and experiments. In a future publi
tion, we intend to return to this question not only using line
stability analysis but also applying more global methods
explore the extent of the stability region of breathers in ph
space.
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APPENDIX: SOLVING THE RECURRENCE RELATIONS

In the following, we present a fast method for computi
solutions of a system of recurrence relations

f ~anW !1 (
mW PBnW

g~amW 2anW !50, ; nW PZd, ~A1!

with anWPR, f : R→R, and g: R→R with f (0)5g(0)
50, under the asymptotic conditionanW→0 asinW i→` with
the norm onZd defined asinW i5( i 51

d uni u.
For this numerical calculation, we limit ourselves to

finite subspacenW PS,Zd. If this subspace is taken larg
enough, we can set the boundary condition such thatanW50 if
nW P]S, since the boundaries will have no influence on t
behavior of the solution in the numerical method propos
below. Numerical solutions of Eq.~A1! can be found starting
from an initial guess using a Newton-Raphson method.
shown by Beyn and Kleinkauf, this method converges i
solution is present, in the case of finite-dimensional m
pings @14#. We conjecture that this holds also in the case
Eq. ~A1!. The idea of the method is to provide accurate i
tial conditions for a Newton-Raphson search.

Observe first thatanW50 for all nW PS is an exact solution
of Eq. ~A1!. We call this the initial seedO0. The first gen-
eration of solutionsO1 is found as follows. First, we se
ve

02670
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at

nt
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s
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f
-

O15M (O0), with M an operator which can be chosen
different ways, e.g., to preserve some symmetry. For now,
chooseM to be the identity map. Then, we allow a single s
of O1 to regain its freedom~i.e., we set the amplitude at thi
site to be equal to some unknown variablex). Without loss
of generality, we can choose this site to be the originnW 50.
We solve~numerically! Eq. ~A1! with nW 50 for anW . This is a
single equation with a single unknown, but, in general, w
several solutions foranW 50. Each of these solutions now de
fines a member ofO1 and is a suitable initial condition fo
applying a Newton-Raphson search. The numerically ex
solutions found by this procedure obey the recurrence r
tions and the boundary conditions. Each of these can be
seed for a new generation of solutions, obtained in the sa
way as above, but with the allowed freedom at a differe
site, if the mapM is the identity map.

This method for solving Eq.~A1! was also mentioned in
the context of homoclinic orbits in the concluding remarks
Ref. @12#. In the spirit of that paper, the operatorM can be
chosen in such a way as to generate a well-defined famil
solutions preserving a symmetry. For the one-dimensio
lattices of Sec. II, this operatorM can be a shift matrix,
preserving, e.g., the symmetryan5a2n , if M is such that
ân215an for n,0 and ân115an for n.0, with the hat
denoting a solution in the new generation. By allowing t
site at the origin to regain its freedom we generate~starting
from O0) all symmetric homoclinic orbits of the two
dimensional map, with the symmetryan5a2n .

Using the ideas of Ref.@12# we can as easily determin
asymmetrichomoclinic orbits as long as the map is inve
ible. For higher-dimensional lattices, similar methods can
derived. Application of this method is limited by the exi
tence of solutions for the amplitude of the free lattice site
there are no solutions, one has to resort to the full method
finding homoclinic orbits in the case of one-dimensional l
tices or to make a guess about approximate solutions
higher-dimensional lattices and depend on the converge
of the Newton-Raphson scheme.
s.
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